
FEATURES

- –55° to +125°C operation
- 12 to 50 VDC input
- · Fully Isolated
- Magnetic feedback
- Fixed frequency 370 kHz typical
- Topology Current Mode Flyback
- 80 V for up to 120 ms transient protection (70 V for 15 V single and dual models)
- Inhibit function
- Indefinite short circuit protection
- Up to 79% efficiency

DC/DC CONVERTERS 28 VOLT INPUT

MGH SERIES				
1.5 W	ATT			

 Size (max.): 1.010 x 0.880 x 0.250 inches (25.65 x 22.35 x 6.35 mm) Shown with "Gull Wing" lead option, also available with straight leads. See Section B8, case B, for dimensions and options.
 Weight: 12 grams maximum
 Screening: Standard, ES, or 883 (Class H). See Section C2 for

screening options, see Section A5 for ordering information.

DESCRIPTION

The MGH Series[™] of DC/DC converters delivers 1.5 watts of output power in a labor saving surface mount package. The wide input voltage range of 12 to 50 VDC accepts the varying voltages of military, aerospace, or space applications. Single output converters feature outputs of 5, 12, or 15 volts while dual output models feature outputs of ±5, ±12, or ±15 volts. Transient protection of 80 volts for up to 120 milliseconds exceeds the requirements of MIL-STD-704A for the 5 and 12 volt single and dual models. The 15 volt single and dual converters will withstand transients of up to 70 volts for up to 120 milliseconds.

CONVERTER DESIGN

MGH Series DC/DC converters incorporate a continuous flyback topology with a constant switching frequency of approximately 370 kHz. Output voltage regulation is accomplished on the primary side using current-mode pulse width modulation (PWM). Regulation is affected by the output load; refer to the specifications tables for more information.

For dual output models, up to 80% of the total load may be on one output providing the other output carries a minimum of 20% of the total load. The dual models can be used at double the output voltage by connecting the load between positive and negative outputs, leaving the common unconnected. As an example the MGH2805D (5 volt dual output) can be used as a 10 VDC output.

INHIBIT FUNCTION

When an open collector TTL logic low is applied to the inhibit terminal, pin 18, the converter shuts down and lowers the output voltage to near zero and input current to as low 2.3 mA. Leaving the terminal open or applying an open collector TTL logic high will enable the converter.

PROTECTION FEATURES

Undervoltage lockout prevents the MGH Series converters from operating below approximately 8 VDC input voltage to keep system current levels smooth, especially during initialization or re-start operations. All models include a soft-start function to prevent large current draw and minimize overshoot. The MGH Series of converters also provide short circuit protection by limiting the current to approximately 125% of full load.

MIL-STD-461

Use Interpoint's FMGA-461 EMI filter to pass the CE03 requirements of MIL-STD-461C.

SURFACE MOUNT PACKAGE

MGH DC/DC converters can be surface mounted with pick-andplace equipment or manually. It is recommended that the case be attached with flexible epoxy adhesive or silicone which is thermally conductive (>1 watt /meter/°K).

Internal components are soldered with SN96 (melting temperature 221°C) to prevent damage during reflow. Maximum reflow temperature for surface mounting the MGH converter is 220°C for a maximum of 30 seconds. SN60, 62, or 63 are the recommended types of solder. Hand soldering should not exceed 300°C for 10 seconds per pin.

The hermetically sealed metal cases are available in two different lead configurations. See Section B8, case B.

MGH SERIES **1.5 WATT**

- ABSOLUTE MAXIMUM RATINGS
- Input Voltage 12 to 50 V
- Output Power
- 1.5 watts
- Capacitive Load
- 200 μF single output models
 100 μF each output, dual output models
 Lead Soldering Temperature
 Reflow 220°C 30 sec. max SN60, 62 or 63 recommended solder

• Hand solder 300°C 10 sec. max per lead Storage Temperature Range (Case) • -65°C to +150°C

DC/DC CONVERTERS

INHIBIT

- Inhibit: TTL Open Collector
 - · Logic low (output disabled) Logic low voltage ≤0.8 V
 - Inhibit pin current 1 mA max Referenced to input common
 - Logic high (output enabled) open collector

RECOMMENDED OPERATING CONDITIONS Input Voltage Range • 12 to 50 VDC continuous

- 12 to 50 VDC continuous
 80 V for 120 msec transient (70 V for 15 V single and dual models)
- Case Operating Temperature (Tc) -55°C to +125°C full power -55°C to +135°C absolute

- Linearly from 100% at 125C° to 0% at 135 C

TYPICAL CHARACTERISTICS

Output Voltage Temperature Coefficient

100 ppm/°C typical Input to Output Capacitance • 100 to 170 pF typical

- Undervoltage Lockout

· 8 V input typical Current Limit

125% of full load typical

Isolation

- 100 megohm minimum at 500 V Conversion Frequency (kHz)
 - 25°C 300 min, 370 typ, 450 max
 - -55°C to +125°C
- 270 min, 370 typ, 470 max Inhibit Pin Voltage (unit enabled)
 - 7 to 12 V

Electrical Characteristics: 25°C Tc, 28 VDC Vin	, 100% load, unless otherwise specified.

SINGLE OUTPUT MODE	LS		MGH2805	S		MGH2812	S		MGH2815	s	_
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE ¹	Tc = 25°C Tc = -55°C TO +125°C	4.95 4.80	5 5	5.05 5.20	11.88 11.52	12 12	12.12 12.48	14.85 14.40	15 15	15.15 15.60	VDC
OUTPUT CURRENT	V _{IN} = 12 to 50 VDC	0	_	300	0	_	125	0	_	100	mA
OUTPUT POWER	V _{IN} = 12 to 50 VDC	0	_	1.5	0	_	1.5	0	_	1.5	W
OUTPUT RIPPLE VOLTAGE	10 kHz - 2 MHz Tc = -55°C TO +125°C		45 65	150 300	_	50 70	200 300	_	35 50	150 250	mV p-p
LINE REGULATION	VIN = 12 to 50 VDC Tc = -55°C TO +125°C		35 40	100 120	_	60 70	200 250	_	70 80	300 350	mV
LOAD REGULATION	10% TO FULL LOAD Tc = -55°C TO +125°C		350 380	700 800		600 640	1300 1400		700 760	1500 1600	mV
	50% TO FULL LOAD Tc = -55°C TO +125°C		100 115	200 300	_	145 160	300 400	_	165 185	350 450	
INPUT VOLTAGE	CONTINUOUS	12	28	50	12	28	50	12	28	50	VDC
NO LOAD TO FULL	TRANSIENT 120 ms	0		80	0		80	0	_	70	V
INPUT CURRENT	NO LOAD Tc = -55°C TO +125°C		5.5 6.0	10 11	_	6.0 6.5	10 12	_	6.0 6.5	11 12	
	FULL LOAD Tc = -55°C TO +125°C		70 73	74 78	_	68 70	72 74	_	68 70	72 74	mA
	INHIBITED Tc = -55°C TO +125°C		2.3 2.4	3.2 3.5	_	2.3 2.4	3.2 3.5	_	2.3 2.4	3.2 3.5	
INPUT RIPPLE CURRENT ²	10k Hz - 10 MHz Tc = -55°C TO +125°C		100 130	200 250	_	100 150	200 250	-	100 150	200 250	mA p-p
EFFICIENCY	Tc = 25°C Tc = -55°C TO +125°C	72 69	77 75	_	74 72	79 77	_	74 72	79 77	_	%
LOAD FAULT ^{3, 4}	POWER DISSIPATION Tc = -55°C TO +125°C		1.3 1.4	2.0 2.3	-	2.0 2.2	3.2 3.5	-	2.3 2.5	3.7 4.0	w
	RECOVERY Tc =55°C TO +125°C		3.0 3.5	12 15	=	3.5 3.5	15 20	_	4.0 4.0	18 20	ms
STEP LOAD RESPONSE ⁵	TRANSIENT Tc = -55°C TO +125°C	-400 -500	185 185	400 500	-700 -800	350 380	700 800	-700 -800	350 380	700 800	mV pk
50 %-100%- 50%	RECOVERY Tc = -55°C TO +125°C		125 125	500 600	_	130 130	500 600	-	140 180	600 750	μs
STEP LINE RESPONSE ⁵	TRANSIENT Tc = -55°C TO +125°C	-400 -500	170 180	400 500	-900 -1000	400 400	900 1000	-750 -850	400 450	750 850	mV pk
12 TO 50 TO 12 V _{IN}	RECOVERY Tc = -55°C TO +125°C		0.75 0.75	3.0 4.0	-	0.6 0.6	2.5 3.0	-	0.47 0.5	2.0 2.5	ms
START-UP 0 TO 28 VDC	DELAY Tc = -55°C TO +125°C		7 10	20 40	_	7 10	20 40	_	7 10	20 40	ms
latos	OVERSHOOT Tc = -55°C TO +1 25°C	_	0 0	100 150	_	0 0	250 350	_	0 0	300 450	mV pk

Notes

1. Specified at 50% of full load.

2. Lin = 2 μH

3. Max. duration of short circuit: 25°C- 90 seconds; 125°C - 30 seconds.

4. Load fault is a short circuit (<50 mohms). Recovery into resistive full load. 5. Input step transition \ge 10 μ s.Recovery is time to settle to within 1% of Vout final value.

interpoint A CRANE CO. CON

B2-94

DC/DC CONVERTERS

Electrical Characteristics: 25°C Tc, 28 VDC Vin, 100% load, unless otherwise specified.

DUAL OUTPUT MOD			MGH2805			MGH2812			GH2815		-
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE ¹	Tc = 25°C Tc = -55°C TO +125°C	±4.95 ±4.80	±5 ±5	±5.05 ±5.20	±11.88 ±11.52	±12 ±12	±12.12 ±12.48	±14.85 ±14.40	±15 ±15	±15.15 ±15.60	VDC
OUTPUT CURRENT ²	V _{IN} = 12 to 50 VDC	0	±150	240	0	±62.5	100	0	±50	80	mA
OUTPUT POWER	V _{IN} = 12 to 50 VDC	0	_	1.5	0	_	1.5	0	_	1.5	w
OUTPUT RIPPLE	10 kHz - 2 MHz	-	35	150	-	35	150	_	30	150	
VOLTAGE +V _{OUT}	Tc = -55°C TO +125°C	_	50	250	_	40	250	_	35	250	mV p-p
-V _{OUT}	10 kHz - 2 MHz	-	35	150	-	35	150	-	30	150	-
	Tc = -55°C TO +125°C		50	250		40	250		35	250	
LINE REGULATION ³	VIN = 12 to 50 VDC Tc = -55°C TO +125°C	_	10 20	50 100	_	100 110	300 400		165 180	500 650	V
LOAD REGULATION ³ , 4	10% TO FULL LOAD -55°C TO +125°C		300 350	600 700	_	550 570	1100 1200		600 630	1300 1400	
	50% TO FULL LOAD -55°C TO +125°C	_	80 100	200 300	_	115 130	250 350	_	125 135	300 400	- mV
CROSS REGULATION ⁵	-V _{OUT}	_	_	400	_	_	500	_	_	500	mV
INPUT VOLTAGE	CONTINUOUS	12	28	50	12	28	50	12	28	50	VDC
NO LOAD TO FULL	TRANSIENT 120 ms	0		80	0		80	0		70	VDO
INPUT CURRENT	NO LOAD	-	5.0	10	-	7.5	13	_	7.5	13	mA
	Tc = -55°C TO +125°C	-	6.0	12	-	8.0	14	_	8.0	14	
	FULL LOAD	-	69	73	-	70	73	-	71	74	
	Tc = -55°C TO +125°C INHIBITED		72 2.3	77 3.2		71 2.3	77 3.2		72 2.3	78	
	$T_c = -55^{\circ}C TO + 125^{\circ}C$		2.3 2.4	3.2 3.5		2.3	3.2 3.5		2.3 2.4	3.2 3.5	
INPUT RIPPLE ⁶ CURRENT	10 kHz - 10 MHz Tc = –55°C TO +125°C	_	100 130	200 250	_	115 150	200 250	_	90 120	200 250	mA p-p
EFFICIENCY	Tc = 25°C Tc = -55°C TO +125°C	73 70	77 75	_	73 70	77 75	_	72 69	76 74	_	%
LOAD FAULT ^{7,8}	POWER DISSIPATION Tc = -55°C TO +125°C	_	1.4 1.6	2.2 2.5	_	2.5 2.7	3.8 4.2	_	2.7 3.0	4.1 4.5	w
	RECOVERY Tc = -55°C TO +125°C	=	3.7 3.8	15 20	=	3.2 3.2	15 20	_	4.0 4.0	15 20	ms
STEP LOAD RESPONSE ⁹	TRANSIENT Tc = -55°C TO +125°C	-300 -400	130 140	300 400	-600 -700	250 260	600 700	-600 -700	250 270	600 700	mV pł
± V _{out} 50 %–100%– 50%	RECOVERY -55°C TO +125°C	_	100 100	400 500	_	165 165	700 800	_	50 50	200 300	μs
STEP LINE RESPONSE ¹⁹	TRANSIENT Tc = -55°C TO +125°C	-250 -300	125 130	250 300	-500 -600	240 250	500 600	-500 -600	220 230	500 600	mV pl
± V _{out} 12 TO 50 TO 12 V _{IN}	RECOVERY Tc = -55°C TO +125°C	_	0.6 0.6	2.5 3.0	=	0.9 0.9	3.0 4.0	_	0.6 0.7	3.0 4.0	ms
START-UP 0 TO 28 VDC, ± V _{out}	DELAY Tc = -55°C TO +125°C	=	8 10	25 45	=	8 10	25 45	_	8 10	25 45	ms
out	OVERSHOOT Tc = -55°C TO +125°C	_	0 0	100 150	_	0	250 350	_	0 0	750 900	mV pk

Notes:

1. Specified at 50% load.

2. Max. spec indicates 80% of the converter's total available power. This 80%

is available from either output.

3. Specification applies to both + and –Vout.

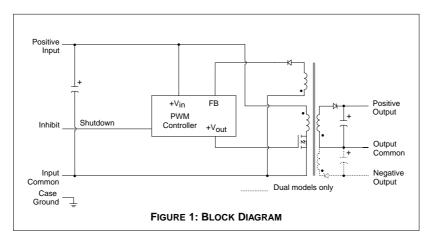
 Although no minimum load is required, at no load the output voltage may increase up to 15%.
 Cross regulation is specified as the effect on –Vout for the following percent-

 Cross regulation is specified as the effect on –Vout for the following percentages of total output power: +Po = 20% and –Po = 80% to +Po=80% and –Po=20%

CRANE Interpoint

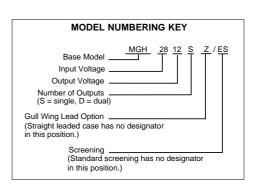
6. Lin = 2 μ H.

7. Max. duration of short circuit: 25°C - 90 seconds; 125°C - 30 seconds.


8. Load fault is a short circuit (<50 mohms). Recovery into resistive full load.

9. Input step transition \geq 10 $\mu s. Recovery is time to settle to within 1% of Vout final value.$

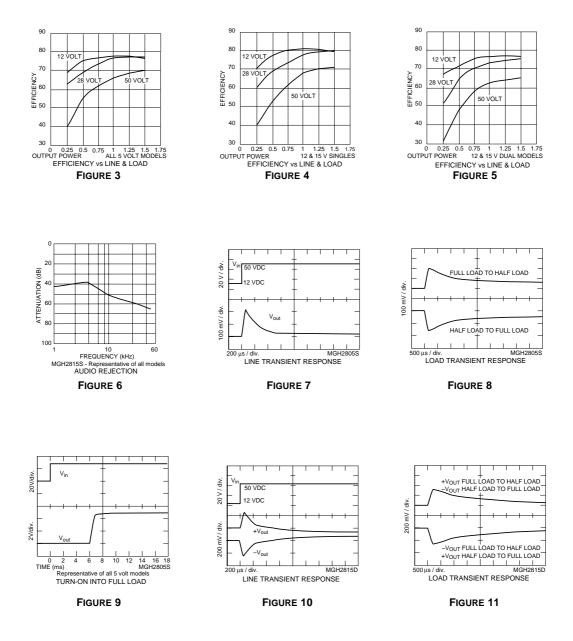
B2-95


MGH SERIES 1.5 WATT

DC/DC CONVERTERS

	PIN OUT						
Pin	Single Output	Dual Output					
1	Positive Input	Positive Input					
2	No connection	No connection					
3	Input Common	Input Common					
4, 5	Positive Output	Positive Output					
6, 7	Case Ground	Case Ground					
8, 9	Output Common	Output Common					
10, 11	Case Ground	Case Ground					
12	No connection	No connection					
13, 14	No connection	Negative Output					
15, 16, 17	No connection	No connection					
18	Inhibit	Inhibit					
	1 2 3 4 5 6 7 7 8 9	18 17 16 15 14 13 12 11 10					
header (bot Cover mark							
	FIGURE 2: PIN						

SMD NU	MBERS
STANDARD MICROCIRCUIT DRAWING (SMD)	MGH SERIES SIMILAR PART
5962-9569601HXC	MGH2805S/883
5962-9569701HXC	MGH2812S/883
5962-9569801HXC	MGH2815S/883
5962-9570201HXC	MGH2805D/883
5962-9570301HXC	MGH2812D/883
5962-9570401HXC	MGH2815D/883
For exact specifications for an S drawing. Call your Interpoint re MGH SMD releases. See Secti mation.	presentative for status on th



DC/DC CONVERTERS

MGH SERIES 1.5 WATT

Typical Performance Curves: 25°C Tc , 28 VDC Vin, 100% load, unless otherwise specified.

MGH SERIES 1.5 WATT

DC/DC CONVERTERS

Typical Performance Curves: 25°C Tc , 28 VDC Vin, 100% load, unless otherwise specified.

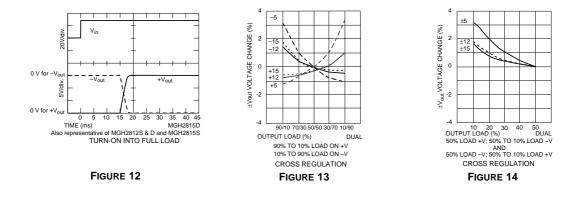
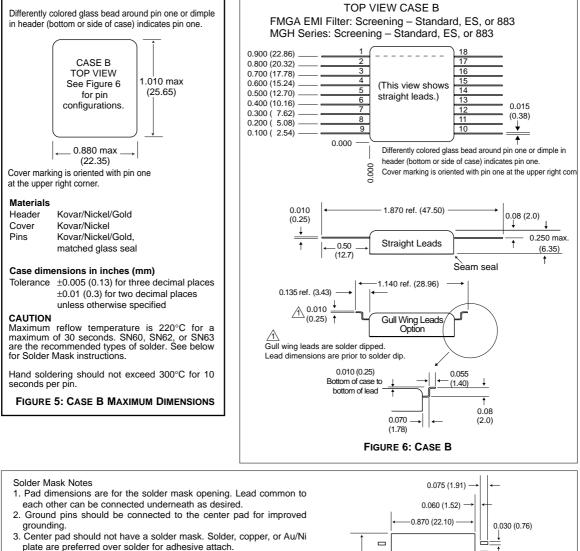
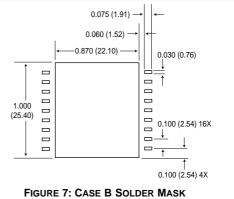


FIGURE 15


22622-001-DTS Rev A DQ# 1033 All technical information is believed to be accurate, but no responsibility is assumed for errors or omissions. Interpoint reserves the right to make changes in products or specifications without notice. MGH Series is a trademark of Interpoint. Copyright © 1998 - 1999 Interpoint. All rights reserved.


B2-98

CASES

CASE B

- 4. Solder coat to solder down converter.
- If less rotation of case is desired, make the pad width 0.020inches (0.51 mm). Pad length can be extended 0.010 inches (0.25 mm) towards the case body and as-desired dimension away from the case body.
 Do not exceed 220°C as measured on the body of the converter (top
- Do not exceed 220°C as measured on the body of the converter (top or bottom).
- 7. Attach the body of the case to the board with a thermally conductive adhesive or SN60, 62, or 63 solder. The adhesive can be electrically conductive as well. It can be applied as an underfill post solder or dispensed and cured prior or during solder.

Note: Although every effort has been made to render the case drawings at actual size, variations in the printing process may cause some distortion. Please refer to the numerical dimensions for accuracy.

QA SCREENING 125°C PRODUCTS

125°C PRODUCTS

TEST (125°C Products)	STANDARD	/ES	/883 (Class H)*
PRE-CAP INSPECTION			
Method 2017, 2032	yes	yes	yes
TEMPERATURE CYCLE (10 times)			
Method 1010, Cond. C, -65°C to 150°C	no	no	ves
Method 1010, Cond. B, -55°C to 125°C	no	yes	no
CONSTANT ACCELERATION			
Method 2001, 3000 g	no	no	ves
Method 2001, 500 g	no	yes	no
BURN-IN			
Method 1015, 160 hours at 125°C	no	no	ves
96 hours at 125°C case (typical)	no	yes	no
	110	ycs	110
FINAL ELECTRICAL TEST MIL-PRF-38534, Group A			
Subgroups 1 through 6: -55°C, +25°C, +125°C	no	no	yes
Subgroups 1 and 4: +25°C case	yes	yes	no
HERMETICITY TESTING			
Fine Leak, Method 1014, Cond. A	no	yes	ves
Gross Leak, Method 1014, Cond. C	no	yes	yes
Gross Leak, Dip (1×10^{-3})	yes	no	no
	,		
FINAL VISUAL INSPECTION			
Method 2009	yes	yes	yes

Test methods are referenced to MIL-STD-883 as determined by MIL-PRF-38534.

*883 products are built with element evaluated components and are 100% tested and guaranteed over the full military temperature range of -55°C to +125°C.

Applies to the following products

MOR Series	MHD Series	MGH Series	FMGA EMI Filter
MFLHP Series	MHV Series	MCH Series	FMSA EMI Filter
MFL Series	MHF+ Series	FM-704A EMI Filter	HUM Modules**
MHP Series	MHF Series**	FMD**/FME EMI Filter	LCM Modules**
MTR Series	MGA Series	FMC EMI Filter	LIM Modules
MQO Series**	MSA Series	FMH EMI Filter	

**MFLHP Series, MQO Series, MHF Series, FMD EMI Filters, Hum Modules, and LCM Modules do not offer '883'' screening.

C2-10